
AD-A252 869

Distributed Systems: Interconnection and Fault Tolerance Studies
Final Report

Ashok Agrawala and Satish Tipathi
Systems Design and Analysis Group

Department of .Pomputer Science
University of Maryland

College Park, MD 20742

DTIC
S ELECTE

JUL 15 1992 DA =

Submitted to:

Army Strategic Defense Command
Huntsville, AL

Project Number DASG60-87-C--006

This document has been cppsovl
foi public zeleose and sole; its
distuibution is unlimited.

92-18314
92 7 9314 lIII lIH flH

1 Introduction

The goal of this project was to study the primary design and implementation issues in distributed
implementation of hard real-time systems. We organized the effort under a project named MARUTI
and defined the goal as the creation of an environment for the development and deployment of
applications with hard real-time, fault tolerance, and security requirements, as axe often found
in the embedded systems[12, 13]. Good examples of such embedded systems are found in signal
processing and avionics applications. Such applications must be able to execute on a distributed,
heterogeneous hardware base. During the past three years we have created a framework for such an
environment and have demonstrated the feasiblty of the design through initial implementations of
the prototype components of the MAR UTI Environment. In this proposal, we outline the research
effort we propose to undertake over the next three years.

The design of the MARUTI Environment is motivated by the requirements of the next genera-
tion of applications. In the rest of this section we present some details of these requirements.

2 Project Accomplishments

In order to address the problems associated with the design and implementation of an advanced,
hard real-time operating system, a number of new techniques have to be developed. Our approach
has been to take a comprehensive view of the problems and address them at the theoretical level
when necessary. At the same time we integrate such developments in implementations, and derive
new theoretical challenges from our experiences in implementing the system.

In this section we present the results to date in theoretical work as well as the current status of
the implementation of the MARUTI environment.

2.1 Theoretical Developments

The development of a comprehensive framework which addresses the requirements for hard real-
time, fault tolerance, and distributed heterogeneous operation poses many new theoretical chal-
lenges. During the past three years, we have been addressing several such problems. In the
following we discuss some of our achievements which are contributions to the state of the art in
their own right. Clearly they have had a major impact on the design and implementations we have
undertaken.

The primary paradigm in the design of the MARUTI environment is that of time-driven compu-
tations. Development of such an environment required a re-examination of the basic assumptions
and approaches, as the generalization of current practices were not applicable. A comprehensive
description of our approach has been presented in the book[2].

2.2 Resource Allocation

Clearly the resource management problem is at the heart of a successful implementation of a real-
time operating system in a distributed environment. Our studies of the issues involved resulted in
our separating the resource management problem into two phases, resource allocation and schedul-
ing. In our design, an allocator decides where tasks and subtasks are to execute. The actual local
scheduling of a resource is carried out in the second phase [2]......

3" -4 J.vall,

'\ < 0

1 . Avail .

Statement A per telecon John Johnson Dist Specioi

USASDC/CSSD-HV
Huntsville, AL 35807-3801 A-1

In conjunction with the allocation of resources, we have developed the concept of resource
verification, which is carried out to ascertain that the scheduling constraints will be met. In this
way the allocation process carrie out its primary function of assigning tasks to various nodes,
taking into consideration the timing constraints. We have studied policy issues related to the
resource allocation[10].

2.3 Real-Time Scheduling

The system maintains a calendar for each resource. If a task's request for a resource can be satisfied,
a reservation is made in the calendar. At run time, resources are allocated to tasks according to
the reservations in the calendar.

n[14], we present a new technique for scheduling: decomposition scheduling. All the requests
are decomposed into a sequence of subsets. Each request is in one and only one subset. The
requests in an earlier subset of the sequence are scheduled before the requests in a later subset.
Tasks within each subset are scheduled using an approach called super-sequence scheduling[16, 15).

In determining the task schedules and constructing the subsets, we take into account the rela-
tionships which exist among the time constraints of tasks. We have defined leading and strongly-
leading relations, and carry out the decomposition based on these relations.

The results to date indicate that this scheduling approach guarantees the generation of a feasible
schedule if one exists[3. At the same time it has relatively modest computation requirements.

2.4 Fault Tolerance

The MARUTI system has been built as a fault tolerant, distributed system. To achieve the fault
tolerance objective, processors in the system are divided into partitions. A real-time task can be
executed in different partitions of processors at the same time. The allocation of tasks to partitions
is dynamically determined according to system parameters, and according to how many faults the
application must tolerate. The resource allocators in different sites exchange replica information
to ensure correct message delivery to all replicas. A theoretical model of this scheme has been
presented in[2].

The fault tolerance scheme follows a fork-join paradigm. A message-sending task sends its
output message to all the replicated message-receiving tasks. The fork part of the task takes care
of the multiple message sending, and is transparent to the user. Each receiving task has a user-
transparent join part, which selects the correct message, based on time and syntax, and gives it
directly to the message-receiving task. We have shown that this paradigm is applicable to handling
user-definable resiliency requirements on an application by application basis[5]. In addition it gives
flexibility in that a different degree of resiliency may be specified for different parts of a computation
graph. The approach permits the construction of a resilient computation graph, which is capable
of restoring the degree of resiliency after a transient failure[5, 6].

2.5 Programming Language Support

The time-driven approach requires the scheduler to know the resource requirements, time con-
straints, and execution time of each application. Communication, precedence and synchroniza-
tion among processes affect the time constraints of applications, and nwist be taken into account
while scheduling. Since these constraints and requirements are application-specific, they need to

2

be derived from application programs. Therefore, the programming language has to provide the
programmer with features to express them.

MPL (MARUTIProgramming Language)[8, 7] is based on an object-oriented paradigm[9]. MPL

objects communicate with each other using both one-way method invocations or remote procedure

calls. It provides exception handling including timing errors. It provides features to express time

constraints on invocations and precedence relations among them. This information is used for pre-

scheduling. MPL provides separate type hierarchy and inheritance hierarchy. It is possible to have

multiple implementations for a given object specification. The MPL objects provide intra-object
as well as inter-object concurrency. It is also possible to express that certain actions have to occur
in parallel or simultaneously. The synchronization mechanism is also designed to facilitate pre-
scheduling. The language supports fault tolerance using strong typing, using exception handling,
and creating object groups. An object group is a mechanism to address, communicate, and control
a number of cooperating objects.

Apart from translation, the MPL compiler extracts the temporal and synchronization con-
straints of objects. These are later used by the scheduler to create a calendar.

2.6 Implementation

MARUTI is built as a modular system and it allows the design, analysis and verification of prop-
erties of user applications executable in the system. It is also designed to be deterministic and
predictable. The implementation is carried out according to these design goals[4, 11].

MAR UTI has been demonstrated as a distributed, real-time, fault tolerant system in a hetero-
geneous environment. In MARUTI real-time tasks and system services are distributed among a set
of processors. As a result, it is not necessary to keep a copy of each service in each processor. The
local allocator dynamically decides to invoke a service on any machine. Furthermore when a local
service cannot meet all the local requests, that is, the service cannot meet its deadline for every
request from the local tasks, it invokes the same service on a remote machine. The remote service
coordination is carried out by the allocators in local and remote processors, through a process of
negotiation.

The MARUTI system is designed as a fault tolerant system. We divide processors into several
partitions, such that no fault propagation can take place from one partition to another. One copy
of a real-time application is only run within one partition. For the fault tolerant purpose, multiple
copies of an application may run at the same time in different partitions. We have implemented
the fork-join mechanism discussed above to provide the fault tolerance function.

The MARUTI system is designed as a heterogeneous system. It is implemented on different
machines, including Sun-3, SparcStations, and DECStations. Since different machines have different
formats of number storage, we are developing various tools which can translate between different
formats when communication is needed between different machines.

The current implementation of MARUTI runs on top of the UNIX[1] system. While UNIX is
not the most hospitable host to implement a time-driven system such as MARUTI, it offers a very
effective system development environment. Further the availability of the UNIX system on many
platforms makes MARUTI portable. Experience ganed in building MARUTI on top of UNIX have
been documented in[l1].

3

2.7 Tools

The MARUTI environment contains a set of tools which have been developed to support the
applications during all phases of their life cycle. The following tools are available in the system at
present:

" Precompiler. In order to run the real-time language we have developed, we have built a
precompiler which can translate code from our language into C code.

* Joint Editor. Currently, part of the information contained in the joints, such as execution
times of SAPs and their temporal relations with other SAPs, has to be created and updated
manually. In order to simplify this task, an interactive joint editor is provided. In the next
version, most of this information will be created by the execution time analyzer and the
precompiler.

" Scheduling Tool. During the application development it is necessary for the programmer to get
some idea about the ability of the program to execute with the necessary time constraints. In
order to support such analysis the scheduling tool permits a user to study the schedulability
of a set of tasks on a set of system resources. The task characteristics are specied as a
computation graph with the resource requirements for each node of the graph given explicitly.
The tool then examines the feasibility of scheduling the tasks with the time constrains and
provides an analysis of the resource bottlenecks and the application program bottlenecks. An
initial version of this tool is operational.

* Calendar Display. This tool presents a dynamic display of the current schedule of tasks to
be executed. It also supports a step by step controlled execution of tasks. This tool and its
displays have been very useful in debugging the demo applications in that its use has become
an integral part of MAR UTI demos.

Since time is one of the most important factors in the system, we have developed a tool which
can stop the MARUTI system timer. The tool can also be used to run tasks in stepwise
fashion. That is, tasks can be run one by one when a user selects a button on the screen.

The MAR UTI system has provided us a platform on which to try different ideas and to implement
different tools. We plan to build more tools, such as an automatic task execution time analyzer.
This would be run at compile time, and would use the syntax of the code to determine the execution
time of real-time tasks.

References

[1] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quaterman. The Design and Implemen-
tation of the 4.SBSD UNIX Operating System. Addison-Wesley, 1989.

[2] Shem-Tov Levi and Ashok K. Agrawala. Real Time System Design. McGraw-Hill, New York
N.Y, 1990.

[3] Manas C. Saksena and Ashok K. Agrawala. Temporal analysis and its application in non-
preemptive scheduling. Technical report, U of MD, July 1991.

4

[4] Daniel Moss6, Olafur Gudmundsson, and Ashok K. Agrawala. The MARUTI system and its
implementation. Technical Report CS TR 2694, U of MD, June 1991.

[5] Daniel Moss6 and Ashok K. Agrawala. Resilient computation graphs for fault tolerance in real-
time environments. Technical Report CS-TR-2613, UMIACS-TR-91-29, U of MD, February
1991.

[6] Noura F. Zoubeir. Fault-tolerance implementation for maruti, a real-time distributed operating
system. Technical report, U of MD, July 1991.

[7] Vivek Nirkhe and William Pugh. A Partial Evaluator for the Maruti Real-Time System. In
Real-Time Systems Symposium, 1991. Submitted for Publication.

[8] Vivek Nirkhe, Satish Tripathi, and Ashok Agrawala. Language Support for the Maruti Real-
Time System. In Real-Time Systems Symposium, December 1990.

[9] Vivek Nirkhe and Satish K. Tripathi. Language Support for Maruti Real-Time System. Tech-
nical Report CS-TR-2481, University of Maryland, College Park MD 20742, 1990.

[10] 6lafur Gudmundsson, Keng-Tai Ko, Yiheng Shi, and Ashok K. Agrawala. On resource man-
agement in hard real-time distributed operating systems. Technical report, University of Mary-
land, College Park MD 20742, January 1991.

[i1] 6 lafur Gudmundsson, Daniel Moss6, Ashok K. Agrawala, and Satish K. Tripathi. MARUTI
a hard real-time operating system. In Second IEEE Workshop on Ezperimental Distributed
Systems, pages 29-34. IEEE, 1990.

[12] 6lafur Gudmundsson, Daniel Mossi, Keng-Ta Ko, Ashok K. Agrawala, and Satish K. Ti-
pathi. Maruti an environment for hard real-time applications. Technical Report CS-TR-2328,
Department of Computer Science, University of Maryland, College Park, Maryland, Nov. 1989.

[13] J. A. Stankovic. Misconceptions about real-time computing: A serious problem for next-
generation systems. IEEE Computer, 21(10):10-19, Oct. 1988.

[14] Xiaoping George Yuan and Ashok K. Agrawala. A decompostion approach to nonpreemptive
real-time scheduling. Technical Report CS-TR-2345, umd, Nov. 1989.

[15] X. Yuan and A. K. Agrawala. Decomposition with the strongly-leading relation for hard
real-time scheduling. Technical Report CS-TR-2346, Dept. of Computer Science, Univ. of
Maryland, Coll. Pk., MD 20742, Nov. 1989.

[16] X. Yuan and A. K. Agrawala. Scheduling real-time task in single schedule subsets. Technical
Report CS-TR-2347, Dept. of Computer Science, Univ. of Maryland, Coll. Pk., MD 20742,
Nov. 1989.

5

A Publications of the MARUTI Project

The MARUTI project has already lead to interesting theoretical and practical results. These are
documented in the following books, articles, and technical reports.

* Vivek Nirkhe and William Pugh, " Partial Evaluation of high level imperative progammn-
ing languages with applications in Hard Real-Time systems", ACM conferenca Principles of
Programming Languages, January, 1992.

* Daniel Moss, Olafur Gudmundsson, and Ashok K. Agrawala, "Prototyping Real Time Op-
erating Systems", First International Workshop on Rapid System Prototyping, IEEE-CS,
1991.

61afur Gudmundsson, Daniel Mossi, Keng-Tai Ko, Ashok K. Agrawala and Satish K. Tri-
pathi, " MARUTI: A Platform for Hard Real-Time Applications", Mission Critical Operating
Systems ,JOS Press, 1991 A.K. Agrawala, K. Gordan and P. Hwang (eds.).

" Vivek Nirkhe and William Pugh " A Partial Evaluator for the MARUTI Hard Real-Time
System", 12th IEEE Real-Time Systems Symposium San Antonio, TX, December, 1991.

" S. Rangarajan and Satish K. Tripathi, "Efficient Synchronization of Clocks in a Distributed
System", 12th IEEE Real-Time Systems Symposium San Antonio, TX, December, 1991.

" Satish K. Tripathi and Vivek Nirkhe, " Synchronization in Hard Real-Time Systems (Position
Paper)", Operating Systems of the 90's and Beyond, Dagstubl Castle, Germany, July 1991.

" Noura F. Zoubeir, " Fault-Tolerance Implementation for MARUTI, a Real-Time Distributed
Operating System",, CS-TR-2728, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, July, 1991.

" Andrew P. Balinsky, " Adding Heterogeneous Communication Support to MARUTI: a Real-
Time Operating System", CS-TR-2710, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, June, 1991.

" Manas C. Saksena and Ashok K. Agrawala, " Temporal Analysis and its Application in Non-
Preemptive Scheduling", CS-TR-2698, Technical Report, Department of Computer Science,.
University of Maryland, College Park, Maryland, June, 1991.

" Andrew P. Balinsky, Olafur Gudmundsson and Ashok K. Agrawala, " Real-Time Heteroge-
neous Communication Support in MARUTI", CS-TR-2697, Technical Report, Department
of Computer Science, University of Maryland, College Park, Maryland, June, 1991.

" Daniel Moss4 and Olafur Gudmundsson and Ashok K. Agrawala, " The MARUTI System
and its Implementation", CS-TR-2694, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, June, 1991.

" Partho Pratim Mishra, Olafur Gudmundsson and Ashok K. Agrawala, "Exmon: A tool for
resource montioring of programs", CS-TR-2688, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, June, 1991.

6

" Vivek Nirkhe and William Pugh " Application of Partial Evaluation to Hard Real-Time
Programming", Eighth IEEE Workshop on Real-Time Operating Systems and Software and
17th IFAC/IFIP Workshop on Real-Time Programming, Pergamon Press, May, 1991.

" Daniel Moss4 and Ashok K. Agrawaa. "Resilient C-.nputation Graphs for Fault Tolerance in
Real-Time Environments", CS-TR-2613, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, February, 1991.

" 61afur Gudmundsson, Keng-Tai Ko, Yiheng Shi and Ashok K. Agrawala, " On Resource
Management in Hard Real-Time Distributed Operating Systems", CS-TR-2582, Technical
Report, Department of Computer Science, University of Maryland, College Park, Maryland,
January, 1991.

" Sarit Mukherjee, Satish K. TDipathi and D. Ghosal, "Performance Analysis of a Multiclass
Priority-based Slotted Ring LAN", CS-TR-2581, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, January, 1991.

" Satish K. Tripathi and Vivek Nirkhe, " Synchronization in Hard Real-Time Systems", Fron-
tiers in Computing Systems Research - Essays on Emerging Technologies, Architectures and
Theories, Plenum Press, 1990, S. K. Tewksbury (Ed).

" Vivek Nirkhe, Satish K. Tripathi and Ashok K. Agrawala, "Language Support for the Maruti
Real-Time System", 11th IEEE Real-Time Systems Symposium, Orlando, FL, pages-"257-
266", December, 1990.

" Ashok K. Agrawala and J. Hendler " Mission Critical Planning: AI on the MARUTI Real-
Time Operating System", Proceedings of DARPA Planning Workshop, November, 1990.

" 61lafur Gudmundsson, Daniel Moss6, Ashok K. Agrawala. and Satish K. fripathi, "MARUTI:
A Hard Real-Time Operating System", IEEE Workshop on Experimental Distributed Sys-
tems, Huntsville, AL, October 1990.

S61lafur Gudmundsson, Dheeraj Sanghi, Ashok K. Agrawala, and Thareja A., "Invisible Re-
source Usage in UNIX", CS-TR-2509, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, July 1990.

" Vivek Nirkhe, Satish K. Tripathi and Ashok K. Agrawala, "Language Support for Maruti
Real-Time System", CS-TR-2481, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, May 1990.

* Xiaoping George Yuan and Ashok K. Agrawala, "Evaluation of a Decomposition Approach
for Real-Time Scheduling Using a Stochastic Model", CS-TR-2462, Technical Report, De-
partment of Computer Science, University of Maryland, College Park, Maryland, April 1990.

" Shem-Tov Levi and Ashok K. Agrawala, "Real-Time System Design", McGraw Hill Publishing
Co, New York, 1990.

" Xiaoping George Yuan and Ashok K. Agrawala, "A Decomposition Approach to Nonpreemp-
tive Scheduling in Hard Real-Time Systems", 11th IEEE Real-Time Systems Symposium,
Orlando, FL, IEEE, December 1989.

7

" Huang Y. and Satish K. Tripathi, "Resource Allocation for Fault Tolerant Systems Using
External Backups.", CS-TR-2343, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, November 1989.

" Ashok K. Agrawala, Olafur Gudmundsson, and Daniel Mossd, "Mission Critical Operating
Systems Requirements and the MARUTI Project", CS-TR-2342, Technical Report, Depart-
ment of Computer Science, University of Maryland, College Park, Maryland, November 1989.

" Ashok K. Agrawala and C. Kim, "Time Estimates and Clock Synchronization in Distributed
Systems", CS-TR-2348, Technical Report, Department of Computer Science, University of
Maryland, College Park, Maryland, November, 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "Scheduling Real-Time Tasks in Single Sched-
ule Subsets", CS-TR-2347, Technical Report, Department of Computer Science, University
of Maryland, College Park, Maryland, November 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "Decomposition with a Strongly-Leading
Relation for Hard Real-Time Scheduling", CS-TR-2346, Technical Report, Department of
Computer Science, University of Maryland, College Park, Maryland, November 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "A Decomposition Approach to Nonpre-
emptive Real-Time Scheduling", CS-TR-2345 Department of Computer Science, University
of Maryland, College Park, Maryland, November 1989.

" Satish K. Tripathi and Y. Huang, "Resource Allocation for Fault Tolerant Systems Using
External Backups", CS-TR-2343, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, November 1989.

" 6iafur Gudmundsson, Daniel Mosse, Keng-Tal Ko, Ashok K. Agrawala, and Satish K. Tri-
pathi, " MARUTI: A Platform for Hard Real-Time Applications", CS-TR-2342, Computer
Science Dept, University of Maryland, College Park, Maryland, October 1989.

" Vivek Nirkhe and Satish K. Tripathi, "Synchronization in Hard Real-Time Systems.", CS-TR-
2337, Technical Report, Department.of Computer Science, University of Maryland, College
Park, Maryland, October 1989.

" 6lafur Gudmundsson, Daniel Moss6, Keng-Tai Ko, Ashok K. Agrawala, and Satish K. Tri-
pathi, "MARUTI an Environment for Hard Real-Time Applications", CS-TR-2328, Depart-
ment of Computer Science, University of Maryland, College Park, Maryland, October 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "Real-Time scheduling with Both Preemption
and Nonpreemption Requirements", Proceedings of the Fifteenth Symposium on Micropro-
cessing and Microprogramming, Koln, F. R. Germany, September, 1989.

* Shem-Tov Levi, Satish K. Tripathi, Scott D. Carson, and Ashok K. Agrawala, "The MARUTI
Hard Real-Time Operating System", ACM Operating System Review, June 1989, Vol 23, No
3.

" Xiaoping George Yuan and Ashok K. Agrawala, "Real-Time Scheduling with Both Pre-
emption and Nonpreemption Requirements", CS-TR-2248, Technical Report, Department
of Computer Science, University of Maryland, College Park, Maryland, April 1989.

" Yuan S.M. and Ashok K. Agrawala, "An Efficient Communication Structure for Decentralized

Algorithms with Fault Tolerance", CS-TR-2206, Technical Report, Department of Computer

Science, University of Maryland, College Park, Maryland, February 1989.

" Sam H. Nob and Ashok K. Agrawala, "Process Timing in UNIX", CS-TR-2205, Technical
Report, Department of Computer Science, University of Maryland, College Park, Maryland,
February 1989.

" Ashok K. Agrawala and Shem-Tov Levi, "Distributed Real-Time Operating Systems", McGraw-
Hill, Inc. New York, NY 1989.

" Nehmer J., "A Structuring Framework for Distributed Operating Systems", CS-TR-2079,
Technical Report, Department of Computer Science, University of Maryland, College Park,
Maryland, July 1988.

" Shem-Tov Levi, Daniel Mossi, and Ashok K. Agrawala, "Allocation of Real-Time Compu-
tations under Fault Tolerance Constraints", CS-TR-2018, Technical Report, Department of
Computer Science, University of Maryland, College Park, Maryland, May 1988.

" Shem-Tov Levi, Ashok K. Agrawala, and Satish K. Tripathi, "Introducing the MARUTI Hard
Real-Time Operating System", CS-TR-2010, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, April 1988.

" J. Nehmer, "An Object Architecture for Hard Real-Time Systems", CS-TR-2003, Technical
Report, Department of Computer Science, University of Maryland, College Park, Maryland,
March 1988.

" Chintamaneni P., Xiaoping George Yuan, Satish K. Tripathi , and Ashok K. Agrawala,
"Scheduling Tasks in a Real-Time System", CS-TR-1991, Technical Report, Department
of Computer Science, University of Maryland, College Park, Maryland, February 1988.

" Shem-Tov Levi, Daniel Moss4, and Ashok K. Agrawala, "Resource Allocation under Fault-
Tolerance Constraints", Proceedings of the IEEE Real-Time Systems Symposium, Huntsville,
AL, 1988

" Shem-Tov Levi, "A Methodology for Designing Distributed, Fault-Tolerant, Reactive, Real-
Time Operating Systems", PhD. Dissertation University of Maryland, College Park, MD.
1988.

" Xiaoping George Yuan, Satish K. Tripathi, and Ashok K. Agrawala, "Scheduling in Real-Time
Distributed Systems-A Review", CS-TR-1955, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, December 1987.

" Shem-Tov Levi and Ashok K. Agrawala, "Temporal Relations and Structures in Real-Time
Operating Systems", CS-TR-1954, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, December 1987.

9

" Shieh Y., Satish K. TrApathi, Chintamaneni P. and Pankaj Jalote, "On Fault Tolerance in
Manufacturing Systc~us",, CS-TR-1939, Technical Report, Department of Computer Science,
University of Maiyland. College Park, Maryland, October 1987.

" Shemn-Tov Levi and Ashok K. Agrawala, "Objects Architecture: A Comprehensive Design
Approach for Real-Time, Distributed, Fault-Tolerant, Reactive Operating Systems", CS-TR-

1915, Technical Report, Department of Computer Science, University of Maryland, College

Park, Maryland, September, 1987.

" Finkel D. and Satish K. Tripathi, "An Analysis of a Buddy System for Fault Tolerance",
CS-TR-1924, Technical Report, Department of Computer Science, University of Maryland,
College Park, Maryland, August 1987.

" Shem-Tov Levi and Ashok K. Agrawala, " On Real-Time Systems Using Local Area Net-
works", CS-TR-1892, Technical Report, Department of Computer Science, UMIACS-TR-87-
35, Technical Report, Institute for Advanced Computer Studies, University of Maryland,
College Park, Maryland, July 1987.

" Ashok K. Agrawala and Shem-Tov Levi, "Objects Architecture for Real-Time, Distributed,
Fault Tolerant Operating Systems", IEEE Workshop on Real-Time Operating Systems, Cam-
bridge, MA, July 1987, pp. 142-148.

" Shem-Tov Levi.and Ashok K. Agrawala, " On Real-Time Operating Systems", CS-TR-1838,
Technical Report, Department of Computer Science, University of Maryland, College Park,
Maryland, April 1987.

" Shem-Tov Levi and Ashok K. Agrawala, "Real-Time Programs: Design Implementation and
Validation-A Survey", CS-TR-1837, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, April 1987.

10

UNIVERSITY OF MARYLAND AT COLLEGE PARK
Ah KDEPARTMENT OF COMPUTER SCIENCE

Ashok K. Agrawala
Phone:(301) 405-2665
Fax:(301) 405-6707
agrawala@cs.umd.edu October 24, 1991

Dr. John Johnson
U.S. Army Strategic Defense Command
CSSD-H-V
P.O. Box 1500
Huntsville, AL 35807-3801

Reference- Contract DASG60-87-C-0066
Dear Dr. Johnson:

Enclosed please find the copies of the Final Report for the project Distributed
Systems: Interconnections and Fault Tolerance. I am forwarding copies of the re-
port to the distribution list as required in the contract. If you need any additional
information please do not hesitate to contact me.

SincerelX yous

'Ashok K. Agrawala
Professor of
Computer Science

Copy to:
Office of Research Administration, UMCP
U.S. Army Strategic Defense Cmd., CSSD-H-V, CSSD-H-CRS, CSSD-BM-PP
Director, Defense Research Projects, 1400 Wilson Blvd, Arlington, VA
Institute for Defense Analysis, Alexandria, VA
ONR Resident Representative

AVWII.IAMS BUIIDING * COLLEGE PARK, MARYLAND 2(742 (.301) 403-2'61

Distributed Systems: Interconnection and Fault Tolerance Studies
Final Report

Ashok Agrawala and Satish Tripathi
Systems Design and Analysis Group

Department of Computer Science
University of Maryland

College Park, MD 20742

Submitted to:

Army Strategic Defense Command
Huntsville, AL

Project Number DASG60-87-C-0066

1 Introduction

The goal of this project was to study the primary design and implementation issues in distributed
implementation of hard real-time systems. We organized the effort under a project named MARUTI
and defined the goal as the creation of an environment for the development and deployment of
applications with hard real-time, fault tolerance, and security requirements, as are often found
in the embedded systems[12, 13]. Good examples of such embedded systems are found in signal
processing and avionics applications. Such applications must be able to execute on a distributed,
heterogeneous hardware base. During the past three years we have created a framework for such an
environment and have demonstrated the feasiblty of the design through initial implementations of
the prototype components of the MARUTI Environment. In this proposal, we outline the research
effort we propose to undertake over the next three years.

The design of the MARUTI Environment is motivated by the requirements of the next genera-
tion of applications. In the rest of this section we present some details of these requirements.

2 Project Accomplishments

In order to address the problems associated with the design and implementation of an advanced,
hard real-time operating system, a number of new techniques have to be developed. Our approach
has been to take a comprehensive view of the problems and address them at the theoretical level
when necessary. At the same time we integrate such developments in implementations, and derive
new theoretical challenges from our experiences in implementing the system.

In this section we present the results to date in theoretical work as well as the current status of
the implementation of the MARUTI environment.

2.1 Theoretical Developments

The development of a comprehensive framework which addresses the requirements for hard real-
time, fault tolerance, and distributed heterogeneous operation poses many new theoretical chal-
lenges. During the past three years, we have been addressing several such problems. In the
following we discuss some of our achievements which are contributions to the state of the art in
their own right. Clearly they have had a major impact on the design and implementations we have
undertaken.

The primary paradigm in the design of the MARUTI environment is that of time-driven compu-
tations. Development of such an environment required a re-examination of the basic assumptions
and approaches, as the generalization of current practices were not applicable. A comprehensive
description of our approach has been presented in the book[2].

2.2 Resource Allocation

Clearly the resource management problem is at the heart of a successful implementation of a real-
time operating system in a distributed environment. Our studies of the issues involved resulted in
our separating the resource management problem into two phases, resource allocation and schedul-
ing. In our design, an allocator decides where tasks and subtasks are to execute. The actual local
scheduling of a resource is ca-ried out in the second phase [2].

In conjunction with the allocation of resources, we have developed the concept of resource
verification, which is carried out to ascertain that the scheduling constraints will be met. In this
way the allocation proces carries out its primary function of assigning tasks to various nodes,
taking into consideration the timing constraints. We have studied policy issues related to the

resource allocation[10.

2.3 Real-Time Scheduling

The system maintains a calendar for each resource. If a task's request for a resource can be satisfied,
a reservation is made in the calendar. At run time, resources are allocated to tasks according to
the reservations in the calendar.

In[14), we present a new technique for scheduling: decomposition scheduling. All the requests
are decomposed into a sequence of subsets. Each request is in one and only one subset. The
requests in an earlier subset of the sequence are scheduled before the requests in a later subset.
Tasks within each subset are scheduled using an approach called super-sequence scheduling[16, 15].

In determining the task schedules and constructing the subsets, we take into account the rela-
tionships which exist among the time constraints of tasks. We have defined leading and strongly-
leading relations, and carry out the decomposition based on these relations.

The results to date indicate that this scheduling approach guarantees the generation of a feasible
schedule if one exists[3]. At the same time it has relatively modest computation requirements.

2.4 Fault Tolerance

The MARUTI system has been built as a fault tolerant, distributed system. To achieve the fault
tolerance objective, processors in the system are divided into partitions. A real-time task can be
executed in different partitions of processors at the same time. The allocation of tasks to partitions
is dynamically determined according to system parameters, and according to how many faults the
application must tolerate. The resource allocators in different sites exchange replica information
to ensure correct message delivery to all replicas. A theoretical model of this scheme has been
presented in[2].

The fault tolerance scheme follows a fork-join paradigm. A message-sending task sends its
output message to all the replicated message-receiving tasks. The fork part of the task takes care
of the multiple message sending, and is transparent to the user. Each receiving task has a user-
transparent join part, which selects the correct message, based on time and syntax, and gives it
directly to the message-receiving task. We have shown that this paradigm is applicable to handling
user-definable resiliency requirements on an application by application basis[5]. In addition it gives
flexibility in that a different degree of resiliency may be specified for different parts of a computation
graph. The approach permits the construction of a resilient computation graph, which is capable
of restoring the degree of resiliency after a transient falure[5, 6].

2.5 Programming Language Support

The time-driven approach requires the scheduler to know the resource requirements, time con-
straints, and execution time of each application. Communication, precedence and synchroniza-
tion among processes affect the time constraints of applications, and must be taken into account
while scheduling. Since these constraints and requirements are application-specific, they need to

2

be derived from application programs. Therefore, the programming language has to provide the
programmer with features to express them.

MPL (MARUTIProgramming Language)J8, 7] is based on an object-oriented paradigm[9]. MPL
objects communicate with each other using both one-way method invocations or remote procedure

calls. It provides exception handling including timing errors. It provides features to express time
constraints on invocations and precedence relations.among them. This information is used for pre-
scheduling. MPL provides separate type hierarchy and inheritance hierarchy. It is possible to have

multiple implementations for a given object specification. The MPL objects provide intra-object
as well as inter-object concurrency. It is also possible to express that certain actions have to occur
in parallel or simultaneously. The synchronization mechanism is also designed to facilitate pre-
scheduling. The language supports fault tolerance using strong typing, using exception handling,
and creating object groups. An object group is a mechanism to address, communicate, and control
a number of cooperating objects.

Apart from translation, the MPL compiler extracts the temporal and synchronization con-
straints of objects. These are later used by the scheduler to create a calendar.

2.6 Implementation

MARUTI is built as a modular system and it allows the design, analysis and verification of prop-
erties of user applications executable in the system. It is also designed to be deterministic and
predictable. The implementation is carried out according to these design goals[4, 11].

MAR UTI has been demonstrated as a distributed, real-time, fault tolerant system in a hetero-
geneous environment. In MARUTI real-time tasks and system services are distributed among a set
of processors. As a result, it is not necessary to keep a copy of each service in each processor. The
local allocator dynamically decides to invoke a service on any machine. Furthermore when a local
service cannot meet all the local requests, that is, the service cannot meet its deadline for every
request from the local tasks, it invokes the same service on a remote machine. The remote service
coordination is carried out by the allocators in local and remote processors, through a process of
negotiation.

The MARUTI system is designed as a fault tolerant system. We divide processors into several
partitions, such that no fault propagation can take place from one partition to another. One copy
of a real-time application is only run within one partition. For the fault tolerant purpose, multiple
copies of an application may run at the same time in different partitions. We have implemented
the fork-join mechanism discussed above to provide the fault tolerance function.

The MARUTI system is designed as a heterogeneous system. It is implemented on different
machines, including Sun-3, SparcStations, and DECStations. Since different machines have different
formats of number storage, we are developing various tools which can translate between different
formats when communication is needed between different machines.

The current implementation of MARUTI runs on top of the UNIX[I] system. While UNIX is
not the most hospitable host to implement a time-driven system such as MARUTI, it offers a very
effective system development environment. Further the availability of the UNIX system on many
platforms makes MARUTI portable. Experience gained in building MARUTI on top of UNIX have
been documented in[11].

3

2.7 Tools

The MARUTI environment contains a set of tools which have been developed to support the

applications during all phases of their life cycle. The following tools are available in the system at

present:

* Precompiler. In order to run the real-time language we have developed, we have built a

precompiler which can translate code from our language into C code.

9 Joint Editor. Currently, part of the information contained in the joints, such as execution

times of SAPs and their temporal relations with other SAPs, has to be created and updated

manually. In order to simplify this task, an interactive joint editor is provided. In the next
version, most of this information will be created by the execution time analyzer and the

precompiler.

* Scheduling Tool. During the application development it is necessary for the programmer to get
some idea about the ability of the program to execute with the necessary time constraints. In
order to support such analysis the scheduling tool permits a user to study the schedulability
of a set of tasks on a set of system resources. The task characteristics are specied as a
computation graph with the resource requirements for each node of the graph given explicitly.
The tool then examines the feasibility of scheduling the tasks with the time constrains and
provides an analysis of the resource bottlenecks and the application program bottlenecks. An
initial version of this tool is operational.

* Calendar Display. This tool presents a dynamic display of the current schedule of tasks to
be executed. It also supports a step by step controlled execution of tasks. This tool and its
displays have been very useful in debugging the demo applications in that its use has become
an integral part of MARUTI demos.

Since time is one of the most important factors in the system, we have developed a tool which
can stop the MARUTI system timer. The tool can also be used to run tasks in stepwise
fashion. That is, tasks can be run one by one when a user selects a button on the screen.

The MARUTI system has provided us a platform on which to try different ideas and to implement
different tools. We plan to build more tools, such as an automatic task execution time analyzer.

This would be run at compile time, and would use the syntax of the code to determine the execution
time of real-time tasks.

References

[1] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quaterman. The Design and Implemen-
tation of the 4.3BSD UNIX Operating System. Addison-Wesley, 1989.

[2] Shem-Tov Levi and Ashok K. Agrawala. Real Time System Design. McGraw-Hill, New York
N.Y, 1990.

[3] Manas C. Saksena and Ashok K. Agrawala. Temporal analysis and its application in non-
preemptive scheduling. Technical report, U of MD, July 1991.

4

[4] Daniel Moss6, Olafur Gudmundsson, and Ashok K. Agrawala. The MARUTI system and its
implementation. Technical Report CS TR 2694, U of MD, June 1991.

[5] Daniel Moss6 and Ashok K. Agrawala. Resilient computation graphs for fault tolerance in real-
time environments. Technical Report CS-TR-2613, UMIACS-TR-91-29, U of MD, February
1991.

[6] Noura F. Zoubeir. Fault-tolerance implementation for maruti, a real-time distributed operating
system. Technical report, U of MD, July 1991.

[7] Vivek Nirkhe and William Pugh. A Partial Evaluator for the Maruti Real-Time System. In
Real-Time Systems Symposium, 1991. Submitted for Publication.

[8] Vivek Nirkhe, Satish Tripathi, and Ashok Agrawala. Language Support for the Maruti Real-
Time System. In Real- Time Systems Symposium, December 1990.

[9] Vivek Nirkhe and Satish K. Tripathi. Language Support for Maruti Real-Time System. Tech-
nical Report CS-TR-2481, University of Maryland, College Park MD 20742, 1990.

[10) 61afur Gudmundsson, Keng-Tai Ko, Yiheng Shi, and Ashok K. Agrawala. On resource man-
agement in hard real-time distributed operating systems. Technical report, University of Mary-
land, College Park MD 20742, January 1991.

[11] 61afur Guclmundsson, Daniel Moss6, Ashok K. Agrawala, and Satish K. Tripathi. MARUTI
a hard real-time operating system. In Second IEEE Workshop on Experimental Distributed
Systems, pages 29-34. IEEE, 1990.

[12] 6 1afur Gudmundsson, Daniel Moss6, Keng-Tal Ko, Ashok K. Agrawala, and Satish K. Tri-
pathi. Maruti an environment for hard real-time applications. Technical Report CS-TR-2328,
Department of Computer Science, University of Maryland, College Park, Maryland, Nov. 1989.

[13] J. A. Stankovic. Misconceptions about real-time computing: A serious problem for next-
generation systems. IEEE Computer, 21(10):10-19, Oct. 1988.

[14] Xiaoping George Yuan and Ashok K. Agrawala. A decompostion approach to nonpreemptive
real-time scheduling. Technical Report CS-TR-2345, umd, Nov. 1989.

[15] X. Yuan and A. K. Agrawala. Decomposition with the strongly-leading relation for hard
real-time scheduling. Technical Report CS-TR-2346, Dept. of Computer Science, Univ. of
Maryland, Coll. Pk., MD 20742, Nov. 1989.

[16] X. Yuan and A. K. Agrawala. Scheduling real-time task in single schedule subsets. Technical
Report CS-TR-2347, Dept. of Computer Science, Univ. of Maryland, Coll. Pk., MD 20742,
Nov. 1989.

5

A Publications of the MARUTI Project

The MARUTI project has already lead to interesting theoretical and practical results. These are
documented in the following books, articles, and technical reports.

* Vivek Nirkhe and William Pugh, " Partial Evaluation of high level imperative progammn-
ing languages with applications in Hard Real-Time systems", ACM conference Principles of
Programming Languages, January, 1992.

" Daniel Moss, Olafur Gudmundsson, and Ashok K. Agrawala, "Prototyping Real Time Op-
erating Systems", First International Workshop on Rapid System Prototyping, IEEE-CS,
1991.

" Olafur Gudmundsson, Daniel Moss6, Keng-Tai Ko, Ashok K. Agrawala and Satish K. Tri-
pathi, " MARUTI: A Platform for Hard keal-Time Applications", Mission Critical Operating
Systems ,IOS Press, 1991 A.K. Agrawala, K. Gordan and P. Hwang (eds.).

" Vivek Nirkhe and William Pugh " A Partial Evaluator for the MARUTI Hard Real-Time
System", 12th IEEE Real-Time Systems Symposium San Antonio, TX, December, 1991.

* S. Rangarajan and Satish K. Tripathi, "Efficient Synchronization of Clocks in a Distributed
System", 12th IEEE Real-Time Systems Symposium San Antonio, TX, December, 1991.

" Satish K. Tripathi and Vivek Nirkhe, " Synchronization in Hard Real-Time Systems (Position
Paper)", Operating Systems of the 90's and Beyond, Dagstuhl Castle, Germany, July 1991.

" Noura F. Zoubeir, " Fault-Tolerance Implementation for MARUTI, a Real-Time Distributed
Operating System",, CS-TR-2728, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, July, 1991.

" Andrew P. Balinsky, " Adding Heterogeneous Communication Support to MARUTI: a Real-
Time Operating System", CS-TR-2710, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, June, 1991.

" Manas C. Saksena and Ashok K. Agrawala, " Temporal Analysis and its Application in Non-
Preemptive Scheduling", CS-TR-2698, Technical Report, Department of Computer Science,,
University of Maryland, College Park, Maryland, June, 1991.

" Andrew P. Balinsky, Olafur Gudmundsson and Ashok K. Agrawala, " Real-Time Heteroge-
neous Communication Support in MARUTI", CS-TR-2697, Technical Report, Department
of Computer Science, University of Maryland, College Park, Maryland, June, 1991.

" Daniel Mossi and Olafur Gudmundsson and Ashok K. Agrawala, " The MARUTI System
and its Implementation", CS-TR-2694, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, June, 1991.

" Partho Pratim Mishra, Olafur Gudmundsson and Ashok K. Agrawala, "Exmon: A tool for
resource montioring of programs", CS-TR-2688, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, June, 1991.

6

* Vivek Nirkhe and William Pugh " Application of Partial Evaluation to Hard Real-Time
Programming", Eighth IEEE Workshop on Real-Time Operating Systems and Software and

17th IFAC/IFIP Workshop on Real-Time Programming, Pergamon Press, May, 1991.

" Daniel Moss4 and Ashok K. Agrawala. "Resilient Computation Graphs for Fault Tolerance in

Real-Time Environments", CS-TR-2613, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, February, 1991.

* Olafur Gudmundsson, Keng-Ta Ko, Yiheng Sbi and Ashok K. Agrawala, " On Resource
Management in Hard Real-Time Distributed Operating Systems", CS-TR-2582, Technical
Report, Department of Computer Science, University of Maryland, College Park, Maryland,
January, 1991.

" Sarit Mukherjee, Satish K. Tipathi and D. Ghosal, "Performance Analysis of a Multiclass
Priority-based Slotted Ring LAN", CS-TR-2581, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, January, 1991.

" Satish K. Tripathi and Vivek Nirkhe, " Synchronization in Hard Real-Time Systems", FRon-
tiers in Computing Systems Research - Essays on Emerging Technologies, Architectures and

Theories, Plenum Press, 1990, S. K. Tewksbury (Ed).

" Vivek Nirkhe, Satish K. Tipathi and Ashok K. Agrawala, "Language Support for the Maruti
Real-Time System", 11th IEEE Real-Time Systems Symposium, Orlando, FL, pages="257-
266", December, 1990.

" Ashok K. Agrawala and J. Hendler " Mission Critical Planning: Al on the MARUTI Real-
Time Operating System", Proceedings of DARPA Planning Workshop, November, 1990.

6lafur Gudmundsson, Daniel Moss6, Ashok K. Agrawala, and Satish K. Tripathi, "MARUTI:
A Hard Real-Time Operating System", IEEE Workshop on Experimental Distributed Sys-
tems, Huntsville, AL, October 1990.

" 6 lafur Gudmundsson, Dheeraj Sanghi, Ashok K. Agrawala, and Thareja A., "Invisible Re-
source Usage in UNIX", CS-TR-2509, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, July 1990.

" Vivek Nirkhe, Satish K. Tripathi and Ashok K. Agrawala, "Language Support for Maruti

Real-Time System", CS-TR-2481, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, May 1990.

* Xiaoping George Yuan and Ashok K. Agrawala, "Evaluation of a Decomposition Approach
for Real-Time Scheduling Using a Stochastic Model", CS-TR-2462, Technical Report, De-
partment of Computer Science, University of Maryland, College Park, Maryland, April 1990.

" Shem-Tov Levi and Ashok K. Agrawala, "Real-Time System Design", McGraw Hill Publishing
Co, New York, 1990.

" Xiaoping George Yuan and Ashok K. Agrawala, "A Decomposition Approach to Nonpreemp-
tive Scheduling in Hard Real-Time Systems", 11th IEEE Real-Time Systems Symposium,
Orlando, FL, IEEE, December 1989.

7

" Huang Y. and Satish K. TDipathi, "Resource Allocation for Fault Tolerant Systems Using
External Backups.", CS-TR-2343, Technical Report, Department of Computer Science, Uni-
versity of Marylana, College Park, Maryland, November 1989.

" Ashok K. Agrawala, 61afur Gudmundsson, and Daniel Moss6, "Mission Critical Operating
Systems Requirements and the MARUTI Project", CS-TR-2342, Technical Report, Depart-
ment of Computer Science, University of Maryland, College Park, Maryland, November 1989.

" Ashok K. Agrawala and C. Kim, "Time Estimates and Clock Synchronization in Distributed
Systems", CS-TR-2348, Technical Report, Department of Computer Science, University of
Maryland, College Park, Maryland, November, 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "Scheduling Real-Time Tasks in Single Sched-
ule Subsets", CS-TR-2347, Technical Report, Department of Computer Science, University
of Maryland, College Park, Maryland, November 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "Decomposition with a Strongly-Leading
Relation for Hard Real-Time Scheduling", CS-TR-2346, Technical Report, Department of
Computer Science, University of Maryland, College Park, Maryland, November 1989.

" Xiaoring George Yuan and Ashok K. Agrawala, "A Decomposition Approach to Nonpre-
emptive Real-Time Scheduling", CS-TR-2345 Department of Computer Science, University
of Maryland, College Park, Maryland, November 1989.

" Satish K. Tripathi and Y. Huang, "Resource Allocation for Fault Tolerant Systems Using
External Backups", CS-TR-2343, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, November 1989.

" 61afur Gudmundsson, Daniel Moss6, Keng-Tai Ko, Ashok K. Agrawala, and Satish K. Tri-
pathi , " MARUTI: A Platform for Hard Real-Time Applications", CS-TR-2342, Computer
Science Dept, University of Maryland, College Park, Maryland, October 1989.

" Vivek Nirkhe and Satish K. Tripatbi, "Synchronization in Hard Real-Time Systems.", CS-TR-
2337, Technical Report, Department. of Computer Science, University of Maryland, College
Park, Maryland, October 1989.

" 61afur Gudmundsson, Daniel Mossi, Keng-Tai Ko, Ashok K. Agrawala, and Satish K. Tii-
pathi, "MARUTI an Environment for Hard Real-Time Applications", CS-TR-2328, Depart-
ment of Computer Science, University of Maryland, College Park, Maryland, October 1989.

" Xiaoping George Yuan and Ashok K. Agrawala, "Real-Time scheduling with Both Preemption
and Nonpreemption Requirements", Proceedings of the Fifteenth Symposium on Micropro-
cessing and Microprogramming, Koln, F. R. Germany, September, 1989.

" Shem-Tov Levi, Satish K. Tripathi, Scott D. Carson, and Ashok K. Agrawala, "The MARUTI
Hard Real-Time Operating System", ACM Operating System Review, June 1989, Vol 23, No
3.

8

" Xiaoping George Yuan and Ashok K. Agrawala, "Real-Time Scheduling with Both Pre-
emption and Nonpreemption Requirements", CS-TR-2248, Technical Report, Department
of Computer Science, University of Maryland, College Park, Maryland, April 1989.

" Yuan S.M. and Ashok K. Agrawala, "An Efficient Communication Structure for Decentralized
Algorithms with Fault Tolerance", CS-TR-2206, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, February 1989.

" Sam H. Noh and Ashok K. Agrawala, "Process Timing in UNIX", CS-TR-2205, Technical
Report, Department of Computer Science, University of Maryland, College Park, Maryland,
February 1989.

" Ashok K. Agrawala and Shem-Tov Levi, "Distributed Real-Time Operating Systems", McGraw-
Hill, Inc. New York, NY 1989.

" Nehmer J., "A Structuring Framework for Distributed Operating Systems", CS-TR-2079,
Technical Report, Department of Computer Science, University of Maryland, College Park,
Maryland, July 1988.

" Shem-Tov Levi, Daniel Moss4, and Ashok K. Agrawala, "Allocation of Real-Time Compu-
tations under Fault Tolerance Constraints", CS-TR-2018, Technical Report, Department of
Computer Science, University of Maryland, College Park, Maryland, May 1988.

" Shem-Tov Levi, Ashok K. Agrawala, and Satish K. Tripathi, "Introducing the MARUTI Hard
Real-Time Operating System", CS-TR-2010, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, April 1988.

" J. Nehmer, "An Object Architecture for Hard Real-Time Systems", CS-TR-2003, Technical
Report, Department of Computer Science, University of Maxyland, College Park, Maryland,
March 1988.

" Chintamaneni P., Xiaoping George Yuan, Satish K. Tripathi , and Ashok K. Agrawala,
"Scheduling Tasks in a Real-Time System", CS-TR-1991, Technical Report, Department
of Computer Science, University of Maryland, College Park, Maryland, February 1988.

" Shem-Tov Levi, Daniel Moss4, and Ashok K. Agrawala, "Resource Allocation under Fault-
Tolerance Constraints", Proceedings of the IEEE Real-Time Systems Symposium, Huntsville,
AL, 1988

" Shem-Tov Levi, "A Methodology for Designing Distributed, Fault-Tolerant, Reactive, Real-
Time Operating Systems", PhD. Dissertation University of Maryland, College Park, MD.
1988.

" Xiaoping George Yuan, Satish K. Tripathi, and Ashok K. Agrawala, "Scheduling in Real-Time
Distributed Systems-A Review", CS-TR-1955, Technical Report, Department of Computer
Science, University of Maryland, College Park, Maryland, December 1987.

" Shem-Tov Levi and Ashok K. Agrawala, "Temporal Relations and Structures in Real-Time
Operating Systems", CS-TR-1954, Technical Report, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, December 1987.

9

" Shieh Y., Satish K. Tripathi, Chintamaneni P. and Pankaj Jalote, "On Fault Tolerance in
Manufacturing Systems",, CS-TR-1939, Technical Report, Department of Computer Science,
University of Marylanc, College Park, Maryland, October 1987.

" Shem-Tov Levi and Ashok K. Agrawala, "Objects Architecture: A Comprehensive Design
Approach for Real-Time, Distributed, Fault-Tolerant, Reactive Operating Systems", CS-TR-
1915, Technical Report, Department of Computer Science, University of Maryland, College
Park, Maryland, September, 1987.

" Finkel D. and Satish K. Tripathi, "An Analysis of a Buddy System for Fault Tolerance",
CS-TR-1924, Technical Report, Department of Computer Science, University of Maryland,
College Park, Maryland, August 1987.

" Shem-Tov Levi and Ashok K. Agrawala, " On Real-Time Systems Using Local Area Net-
works", CS-TR-1892, Technical Report, Department of Computer Science, UMIACS-TR-87-
35, Technical Report, Institute for Advanced Computer Studies, University of Maryland,
College Park, Maryland, July 1987.

" Ashok K. Agrawala and Shem-Tov Levi, "Objects Architecture for Real-Time, Distributed,
Fault Tolerant Operating Systems", IEEE Workshop on Real-Time Operating Systems, Cam-
bridge, MA, July 1987, pp. 142-148.

" Shem-Tov Levi.and Ashok K. Agrawala, " On Real-Time Operating Systems", CS-TR-1838,
Technical Report, Department of Computer Science, University of Maryland, College Park,
Maryland, April 1987.

* Shem-Tov Levi and Ashok K. Agrawala, "Real-Time Programs: Design Implementation and
Validation-A Survey", CS-TR-1837, Technical Report, Department of Computer Science,
University of Maryland, College Park, Maryland, April 1987.

10

